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Bridge Condition Rating Forecast—Survival-Based Models 

Raka Goyal, Ph.D., P.E. 

Introduction 

The survival-based models on InfoBridgeTM are probabilistic bridge deterioration models based 

on a methodology that combines survival analysis and Markov chain theory. The modeling 

framework was first developed and implemented on bridge deck, superstructure, and 

substructure components of the North Carolina State bridge inventory (Goyal 2015; Cavalline 

et al. 2015). In the current research, the model’s implementation has been substantially 

expanded and improved for the more complex application to the entire nationwide bridge 

inventory. 

Survival analysis is a statistical approach that analyzes the time until death or failure—in the case 

of bridge components, which is the time spent in a condition rating until it deteriorates to a lower 

condition rating. Survival analysis allows determination of the survival probability of the 

component in that condition rating at any point in time. The main advantage of survival analysis 

is that it can account for incompletely recorded durations commonly found in duration-based 

data, such as condition rating observations truncated at the beginning and end of the recording 

period. Instead of discarding the incomplete observations, a mechanism called “censoring” is 

used to include the observations in the analysis, which permits a more realistic estimate of 

duration compared to other statistical approaches. 

In this study, the Cox proportional hazards model (PHM) (Cox 1972) has been used for the analysis 

of condition rating durations. Cox PHM is a semiparametric approach that does not make any 

assumptions about the shape of the distribution and can be used to analyze even unimodal 

hazard functions associated with some infrastructure components. For the survival-based models 

developed in this study, the transition probabilities of the Markov chain are calculated from the 

PHM survival functions at each condition rating, carrying the advantage of survival analysis 

probabilistically over the entire lifecycle. Additionally, multivariable effects at each condition 

rating are quantified in terms of PHM hazard ratios and are used to modify the Markov chain 

transition probabilities. In this way, the effects of time dependence and exogenous factors on 

deterioration, as analyzed through survival analysis, are incorporated in the Markov chain to 

develop a probabilistic lifecycle deterioration model. 

Proportional Hazards Bridge Deterioration Model 

The survival function (S(t)) associated with a bridge-component condition rating is the cumulative 

survival rate of bridge components in the condition rating. The hazard rate or hazard function is 
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the instantaneous risk of transitioning to a lower rating at time (t) conditional to survival until 

that time. In the Cox PHM, the hazard rate (h(t,z)) is defined as the product of a time-dependent, 

nonparametric-baseline hazard function (h0(t)) and a time-independent exponential function, 

representing the effects of design variables (z) through regression coefficients (β): 

 (1) 

In Equation 1, the time-independent exponential function represents the effects of covariates, 

or explanatory factors, on the hazard rate. The baseline hazard rate is associated with the 

baseline variables, which are assigned a value of zero. 

Proportional hazards lifecycle deterioration modeling 

The proportional hazards bridge deterioration model (Goyal 2015) can be represented in terms 

of structure-specific transition probability matrices (Pi) associated with each year (i) of the 

prediction period. 

 (2) 

The matrix elements (Pij) represent the probability of the bridge component transitioning from 

condition rating i to condition rating j, assuming there is no improvement in condition rating and 

that the component deteriorates by no more than a single rating in 1 year. In each row, Pkk, on 

the diagonal, is the baseline stay-the-same transition probability for condition rating k. If Sk(t,z) 

is the baseline survival function of a bridge deck associated with condition rating k for a bridge 

described by the vector of covariates z, the baseline transition probability (Goyal 2015; Goyal 

et al. 2020) of staying at the same condition rating over the next annual reporting cycle at any 

time (t) is given by: 

 (3) 

Since the sum of probabilities in each row should be equal to 1, the baseline transition probability 

of deteriorating to a lower rating is 1 ‒ Pkk. The baseline transition probabilities are uniquely 
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modified for each bridge or category of bridges using structure-specific hazard ratios (HRk) 

calculated by multiplying the PHM hazard ratios for the factors associated with a bridge that are 

identified as significantly influencing deterioration at condition rating k. A stationary 

implementation of the proportional hazards deterioration model is used in this study, in which 

stationary or constant transition probabilities (Pkk) are obtained by averaging the yearly transition 

probabilities across the duration of the PHM-baseline survival functions for each condition 

rating k. The resulting stationary-transition probability matrix (P) is used in a homogeneous 

Markov chain to predict the future condition-state vector (Zn) of a bridge component after n years 

if its present condition-state vector (Z0) is known using: 

 (4) 

The condition-state vectors comprise of the probabilities of the bridge component being at all 

possible condition ratings at any given time. The future state vector (Zn) can be multiplied by the 

column vector (R) of condition ratings to produce the expected condition rating (E) of the bridge 

component after n years. 

 (5) 

This document briefly describes the implementation of the proportional hazards deterioration 

model to develop deck, superstructure, substructure, and culvert deterioration models for the 

nationwide bridge inventory, with more details to follow in a journal publication currently under 

preparation. Detailed background and theoretical development of the proportional hazards 

deterioration model can be found elsewhere (Goyal 2015; Goyal et al. 2017; Goyal et al. 2020). 

Data Structuring 

The nationwide survival-based models are based on the Federal Highway Administration (FHWA) 

National Bridge Inventory (NBI) data spanning from 1983 to 2019 for highway bridges nationwide 

(FHWA 2020b). The NBI files store historical inspection records of all bridges in the United States 

with a span greater than 20 feet (ft), with more than 100 data items per bridge, per year of 

recorded service (FHWA 1995). The first step in organizing the data for modeling was to identify, 

query, and extract the NBI fields relevant to deterioration modeling from the yearly inspection 

records of individual bridges, and assemble a continuous record of bridge condition-related data 

from 1983 to 2019. In addition to NBI data, yearly bridge-specific climate data attributes 

extracted from the National Aeronautics and Space Administration’s (NASA) Modern-Era 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2) database were 

similarly processed and included in the modeling dataset. 
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Bridges with concrete decks constitute an overwhelming percentage (greater than 80 percent) 

of the NBI and are a focus area of the Long-Term Bridge Performance (LTBP) Program. For 

survival-based deterioration modeling, bridges were classified based on deck material, main 

structure material, and design type. Further, since duration-based analysis is best served by long 

duration records, and in the interest of optimizing the use of computational resources, it was 

decided that only bridges with continuous records of 25 years or more be used for model 

development. The initial classification of major concrete deck bridge types was expanded to 

include all bridges in the NBI database, and in addition to deck models, deterioration models 

were developed for superstructure and substructure components and culverts in each category. 

The bridge categories for survival-based models with the number of bridges in the historical 

database selected for model development are provided in Table 1. 

Table 1. Bridge categories for survival-based deterioration models. © 2020 Raka Goyal. 

Bridge Type Deck Type 
(NBI Item 107) 

Main Structure 
Material 
(NBI Item 43A) 

Main Structure Design 
(NBI Item 43B) 

No. Bridges Included 
in Model 
Development 
(1983‒2019)* 

Steel Girder Concrete (Cast-in-
Place and Precast 
Panels) 

Steel and Steel 
continuous 

Stringer/Multibeam or 
Girder 

37,906 

Prestressed 
Concrete 
Girder 

Prestressed 
concrete and 
Prestressed 
concrete 
continuous 

Stringer/Multibeam or 
Girder 

26,324 

Prestressed 
Concrete Box 
Girder 

Box Beam or Girders – 
Multiple and Single or 
Spread 

16,834 

Concrete Slab Concrete and 
Concrete 
continuous 

Slab 26,373 

Concrete 
Girder 

Stringer/Multibeam or 
Girder, Tee Beam, and 
Channel Beam 

25,491 

Concrete Deck 
– Other 

All other concrete deck bridges 22,919 

Timber Deck Timber Timber Stringer/Multibeam or 
Girder 

10,146 

Steel Deck Steel Steel and Steel 
continuous 

Stringer/Multibeam or 
Girder 

5,018 

Other All other bridges 23,918 

Culvert–
Concrete 

 Concrete and 
Concrete 
continuous 

Culvert 40,617 

Culvert–Other All other culverts 7,637 

* Rebuilt and reconstructed bridges separated based on NBI items “Year Built” and “Year Reconstructed.” 

Design variables for proportional hazards survival analysis  

Data was further preprocessed to extract all observations of the response variable, which is the 

observed continuous duration at each NBI condition rating analyzed. For each observed duration, 
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corresponding censoring information was compiled in a separate vector of the same size as the 

response variable, but stored as a binary variable of either 0 or 1, depending on whether the 

observations were classified as completely observed or censored. In this study, all continuous 

observations that were truncated at the beginning (1983) or end year (2019) of the NBI database 

were classified as right censored, presuming that the actual duration of the condition rating was 

longer than observed due to the limited timespan of the data recording period. Further, all 

observations where an increase in condition rating was observed rather than deterioration were 

considered as complete or uncensored under the assumption that observed improvements in 

condition rating reflected maintenance action performed because of an unrecorded transition to 

the lower rating. 

For proportional hazards analysis, the descriptive information on each structure, such as its 

functional classification, traffic characteristics, design parameters, and other details contained 

within the NBI historical records that could potentially influence the deterioration rates of 

specific bridge components, were considered as potential explanatory factors. Some factors were 

derived from two or more NBI fields. For example, “age” refers to the age of the bridge at the 

beginning of the observed condition rating duration and is calculated based on the corresponding 

data year and the year when the bridge was last built or reconstructed. Additionally, average 

daily traffic per lane (ADTL) and average daily truck traffic per lane (ADTTL) were calculated by 

dividing the average daily traffic (ADT) and average daily truck traffic (ADTT), respectively, by the 

number of through-traffic lanes on a bridge also recorded in the NBI (ADTT mentioned here refers 

to the number of trucks, which was first calculated from the percentage ADTT recorded in the 

NBI). ADTL and ADTTL are new variables that were introduced in the nationwide study to account 

for the width of the roadway in studying the impact of traffic on bridge deterioration. In addition 

to NBI-based variables, potentially influential climate factors, such as the frequency of snow days 

and freeze–thaw cycles from NASA’s climate database, which were associated with each bridge 

based on the geospatial information in the NBI, were also included in the analysis. 

Each explanatory factor is organized into categories designated by one or more design variables 

to which bridges are classified based on either binary or reference cell coding. Variables such as 

ADTL, ADTTL, age, and maximum span length, which are continuously recorded, are divided into 

categories of approximately equal frequency of occurrence for each component based on 

weighted averages computed across the available bridge records. The categorical ranges for the 

variables differ for disparate bridge categories (Table 1), depending on the different statistical 

distributions of variables associated with each bridge category. The design variables included in 

the development of survival-based models for concrete deck bridges nationwide with 

corresponding baseline categories are listed in Table 2. Category ranges developed for steel 

stringer bridges are provided for illustration. The subsequent steps involving multivariable 

proportional hazards regression were performed individually on each of the distinct condition 
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rating-specific sets of dependent and independent PHM regression inputs, extracted for each 

category of bridges. 

Table 2. Design variables included in proportional-hazards survival analysis of concrete-deck bridges nationwide. 
© 2020 Raka Goyal. 

Factor Baseline Category* Design Variable* 

Deck Type Cast-in-Place Deck Precast Panel Deck 

Span Type Simple Span Continuous Span 

Functional Class Noninterstate Interstate 

Average Daily Traffic per Lane (ADTL) ADTL (≤ 124) ADTL2 (124‒1037) 

ADTL3 (1037‒4113) 

ADTL4 (> 4113) 

Age (years) Age (≤ 19) Age2 (19‒30) 

Age3 (30‒42) 

Age4 (> 42) 

Skew No Skew Skew 

Reconstruction Original/Rebuilt Reconstructed 

Average Daily Truck Traffic per Lane 
(ADTTL) 

ADTTL (≤ 4) ADTTL2 (4‒63) 

ADTTL3 (63‒335) 

ADTTL4 (> 335) 

Wearing Surface No Wearing Surface Monolithic Concrete 

Integral Concrete 

Latex Concrete 

Low Slump Concrete 

Epoxy Overlay 

Bituminous 

Timber 

Gravel 

Other 

Deck Membrane No Membrane Deck Membrane 

Deck Protection No Protection Deck Protection 

Maximum Span (m) Max Span (≤ 13) MaxSpan2 (13–20) 

MaxSpan3 (20–28) 

MaxSpan4 (> 28) 

Number of Spans Single Span Multiple Spans 

Highway System Non-NHS NHS 

Snow Days Zero Snow Days SnowDays2 (1–50) 

SnowDays3 (50–84) 

SnowDays4 (> 84) 

Freeze–Thaw Cycles Zero Freeze–Thaw Cycles Freeze–Thaw Cycles > 0 

*Category values in parentheses are for concrete deck steel stringer bridges. 

Proportional Hazards Deterioration Model Development 

The variables that were found to be statistically significant at each condition rating using PHM 

regression were further processed through a best subset selection algorithm to optimize the size 

of the model without compromising its reliability. The survival functions developed using the best 
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subset model incorporate the effect of the most significant explanatory variables on the 

deterioration rate over individual condition ratings. The condition rating-dependent best subsets 

and associated hazard ratios obtained for the significant explanatory factors identified in the 

proportional hazards deck model for steel stringer bridges nationwide are summarized in Table 3. 

Table 3. Best subset factors and hazard ratios in proportional hazards deck deterioration model for concrete deck 
steel stringer bridges nationwide. © 2020 Raka Goyal. 

Best Subset Factor Hazard Ratios at Condition Rating 

9 8 7 6 5 4 3 

Precast Panel Deck 1 1 1 1 1.3441 1 1 

Continuous Span 1 1.1706 1.1159 1 1.1335 1.0834 1 

Interstate 1.1563 1.1236 1 1.0490 1.0961 1 1 

ADTL2 1.2038 1.3289 1.2514 1.0899 1.1891 1.2324 1 

ADTL3 1.4176 1.5090 1.3309 1.0836 1.2801 1.3543 1 

ADTL4 1.5699 1.5758 1.3086 1 1.2509 1.4047 1 

Age2 1.3224 1.8314 1.3247 1 1.0897 1 1 

Age3 1.2510 2.2992 1.5920 0.9229 1 1 1.3195 

Age4 1 2.1078 1.5662 0.8961 0.8493 0.7681 1 

Skew 1 1.0867 1 1.0332 1.0559 1.0666 1 

Reconstructed 1.2342 1.3057 1.1734 0.9396 1 0.8950 1 

ADTTL2 1 1 0.9049 1.0949 1 1 1.2290 

ADTTL3 1.2680 1.1079 0.9411 1.1228 1 1 1.3699 

ADTTL4 1 1.1271 0.9752 1.2282 0.9745 1 1.4987 

Monolithic Concrete 1 0.7393 1 1 1 1 1 

Integral Concrete 1 0.8819 1.2956 1.3557 1.2698 1 1 

Latex Concrete 1 1 1.3748 1.2275 1.3355 1.2089 1 

Low Slump Concrete 1 1 1 1 1 1 1.5727 

Epoxy Overlay 1 1 1.4442 1 1.8996 1 1 

Bituminous 1.2685 0.8080 0.9168 1.0340 1 0.9149 1 

Timber 1 1 1 2.0292 1 1 1 

Gravel 1 0.6090 1 1 1 1 1 

Other 1.5512 1 1.3531 1.3578 1.4503 1 1 

Deck Membrane 1.3861 1.2141 1.1512 1 1 1 1 

Deck Protection 1.2274 1.1343 0.9547 1 1 1 1 

MaxSpan2 1 1 1 1.1227 1.1196 1.1522 1 

MaxSpan3 1 1.1308 1.0559 1.1497 1.1937 1.2091 1 

MaxSpan4 1 1.1428 1.0739 1.1821 1.1802 1.4226 1.2537 

Multiple Spans 1 1 0.9389 1 1 1 1 

NHS 1 1 1 1 1.0752 1 1 

SnowDays2 1 1 1.1574 0.7227 0.8134 1 0.6655 

SnowDays3 1 1 1.5243 1 1 1 0.6756 

SnowDays4 1.2057 1 1.8469 1.1313 1 1 1 

Freeze–Thaw Cycles 1 1.4493 0.6982 1 1.2735 1 1 

A hazard ratio value of 1 signifies a lack of influence on the deterioration rate, and indicates that 

the factor was not included in the best subset for that rating. For example, in Table 3, precast 

panel deck is included only in the best subset associated with condition rating 5. A hazard ratio 
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value less than 1 indicates that the factor is associated with a reduced rate of deterioration, and 

a value greater than 1 indicates that the factor is associated with an increased rate of 

deterioration relative to the baseline category. As seen in Table 3, revealing the varying effects 

of the same factors at different condition ratings across the bridge lifecycle is a unique aspect of 

the proportional hazards deterioration model. 

The final step in the proportional hazards deterioration model development is the calculation of 

baseline transition probabilities at each condition rating and assembling the Markov chain 

transition probability matrix, shown in equation 2, for future condition forecasting. Sufficient 

historical condition rating data was available in the nationwide NBI database to develop survival 

function-based transition probabilities for all the condition ratings from 9 to 3. The stay-the-same 

transition probability for condition rating 2 was prescribed as 0.85 to prevent the deterioration 

models from converging abruptly to condition rating 2. Condition rating 1 is the lowest, or 

absorbing state, with a stay-the-same transition probability of 1. Figure 1 shows deck 

deterioration models which exhibit the combined effects of variables including ADTL, age, and 

maximum span length on the deck deterioration rates of concrete deck steel stringer bridges, 

with other variables at baseline values. Figure 1 illustrates the depth of information revealed by 

the proportional hazards deterioration models based on the NBI. 

 

© 2020 Raka Goyal. 
Figure 1. Proportional hazards deck deterioration models for concrete deck steel stringer bridges showing the 
effect of ADTL, age, and maximum span length over the bridge lifecycle. 

Proportional hazards deterioration model plots for individual bridges in each bridge category 

(Table 1) are available on InfoBridge (FHWA 2020a). In addition to the mean predicted condition 

rating, prediction curves associated with cumulative probabilities of 75 percent (lower bound), 

50 percent (median), and 25 percent (upper bound) are also displayed, as shown in Figure 2. 
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Source: FHWA. 
Figure 2. Survival based deck condition forecasting curves on LTBP InfoBridge (FHWA 2020a). 
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